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constrainedforecast Constrained Forecast of One-sided Integer Response Model

Description

This function estimates the lower and upper 80% and 95% forecasts of the Model. The final values
are within the lower and upper limits of the base data. Used in conjunction with <scaled_logit>
and <inv_scaled_logit> functions, they are adapted from Hyndman & Athanasopoulos (2021) and
modified for independent use rather than be restricted to be used with a particular package.

Usage

constrainedforecast(Model, lower, upper)

Arguments

Model This is the exponential values from the invscaledlogit function.

lower The lower limit of the forecast

upper The upper limit of the forecast



corplot 3

Value

A list of forecast values within 80% and 95% confidence band. The values are:

Lower 80% Forecast at lower 80% confidence level.

Upper 80% Forecast at upper 80% confidence level.

Lower 95% Forecast at lower 95% confidence level.

Upper 95% Forecast at upper 95% confidence level.

Examples

library(Dyn4cast)
library(splines)
library(forecast)
lower <- 1
upper <- 37
Model <- lm(states ~ bs(sequence, knots = c(30, 115)), data = Data)
FitModel <- scaledlogit(x = fitted.values(Model), lower = lower,
upper = upper)

ForecastModel <- forecast(FitModel, h = length(200))
ForecastValues <- constrainedforecast(Model = ForecastModel, lower, upper)

corplot Custom plot of correlation matrix

Description

This is a custom plot for correlation matrix in which the coefficients are displayed along with
graphics showing the magnitude of each coefficient.

Usage

corplot(r)

Arguments

r Correlation matrix of the data for the plot

Value

The function returns a custom plot of the correlation matrix

corplot The custom plot of the correlation matrix
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data_transform Standardize data.frame for comparable Machine Learning predic-
tion and visualization

Description

Often economic and other Machine Learning data are of different units or sizes making either
estimation, interpretation or visualization difficult. The solution to these issues can be handled if the
data can be transformed into unitless or data of similar magnitude. This is what data_transform
is set to do. It is simple and straight forward to use.

Usage

data_transform(data, method, MARGIN = 2)

Arguments

data A data.frame with numeric data for transformation. All columns in the data
are transformed

method The type of transformation. There three options. 1 is for log transformation, 2
is for min-max transformation and 3 is for mean-SD transformation.

MARGIN Option to either transform the data 2 == column-wise or 1 == row-wise. De-
faults to column-wise transformation if no option is indicated.

Value

This function returns the output of the data transformation process as

tata_transformed

A new data.frame containing the transformed values

Examples

library(Dyn4cast)
# View the data without transformation

data0 <- Transform %>%
pivot_longer(!X, names_to = "Factors", values_to = "Data")

ggplot(data = data0, aes(x = X, y = Data, fill = Factors, color = Factors)) +
geom_line() +
scale_fill_brewer(palette = "Set1") +
scale_color_brewer(palette = "Set1") +
labs(y = "Data", x = "Series", color = "Factors") +
theme_bw(base_size = 12)

# Example 1: Transformation by min-max method.
# You could also transform the `X column` but is is better not to.
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data1 <- data_transform(Transform[, -1], 1)
data1 <- cbind(Transform[, 1], data1)
data1 <- data1 %>%

pivot_longer(!X, names_to = "Factors", values_to = "Data")

ggplot(data = data1, aes(x = X, y = Data, fill = Factors, color = Factors)) +
geom_line() +
scale_fill_brewer(palette = "Set1") +
scale_color_brewer(palette = "Set1") +
labs(y = "Data", x = "Series", color = "Factors") +
theme_bw(base_size = 12)

# Example 2: `log` transformation

data2 <- data_transform(Transform[, -1], 2)
data2 <- cbind(Transform[, 1], data2)
data2 <- data2 %>%

pivot_longer(!X, names_to = "Factors", values_to = "Data")

ggplot(data = data2, aes(x = X, y = Data, fill = Factors, color = Factors)) +
geom_line() +
scale_fill_brewer(palette = "Set1") +
scale_color_brewer(palette = "Set1") +
labs(y = "Data", x = "Series", color = "Factors") +
theme_bw(base_size = 12)

# Example 3: `Mean-SD` transformation

data3 <- data_transform(Transform[, -1], 3)
data3 <- cbind(Transform[, 1], data3)
data3 <- data3 %>%

pivot_longer(!X, names_to = "Factors", values_to = "Data")

ggplot(data = data3, aes(x = X, y = Data, fill = Factors, color = Factors)) +
geom_line() +
scale_fill_brewer(palette = "Set1") +
scale_color_brewer(palette = "Set1") +
labs(y = "Data", x = "Series", color = "Factors") +
theme_bw(base_size = 12)

estimate_plot Plot of Order of Significance of Estimated Regression Coefficients

Description

This function provides graphic displays of the order of significance estimated coefficients of models.
This would assists in accessing models so as to decide which can be used for further analysis,
prediction and policy consideration.
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Usage

estimate_plot(Model, limit)

Arguments

Model Estimated model for which the estimated coefficients would be plotted

limit Number of variables to be included in the coefficients plots

Value

The function returns a plot of the order of importance of the estimated coefficients

estimate_plot The plot of the order of importance of estimated coefficients

formattedcut Convert continuous vector variable to formatted factors

Description

Often, when a continuous data is converted to factors using the base R cut function, the resultant
Class Interval column provide data with scientific notation which normally appears confusing
to interpret, especially to casual data scientist. This function provide a more user-friendly output
and is provided in a formatted manner. It is a easy to implement function.

Usage

formattedcut(data, breaks, cut = FALSE)

Arguments

data A vector of the data to be converted to factors if not cut already or the vector of
a cut data

breaks Number of classes to break the data into

cut Logical to indicate if the cut function has already being applied to the data,
defaults to FALSE.

Value

The function returns a data frame with three or four columns i.e Lower class, Upper class,
Class interval and Frequency (if the cut is FALSE).

Cut The data frame
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Examples

DD <- rnorm(100000)
formattedcut(DD, 12, FALSE)

DD1 <- cut(DD, 12)
DDK <- formattedcut(DD1, 12, TRUE)
DDK
# if data is not from a data frame, the frequency distribution is required.
as.data.frame(DDK %>%
group_by(`Lower class`, `Upper class`, `Class interval`) %>%
tally())

garrett_ranking Garrett Ranking of Categorical Data

Description

There are three main types of ranking: Standard competition, Ordinal and Fractional. Garrett’s
Ranking Technique is the application of fractional ranking in which the data points are ordered
and given an ordinal number/rank. The ordering and ranking provide additional information which
may not be available from frequency distribution. Again, the ordering is based on the level of
seriousness or severity of the data point from the view point of the respondent. Ranking enables
ease of comparison and makes grouping more meaningful. It is used in social science, psychology
and other survey types of research. This functions performs Garrett Ranking of up to 15 ranks.

Usage

garrett_ranking(data, num_rank, ranking = NULL, m_rank = c(2:15))

Arguments

data The data for the Garrett Ranking, must be a data.frame.

num_rank A vector representing the number of ranks applied to the data. If the data is a
five-point Likert-type data, then number of ranks is 5.

ranking A vector of list representing the ranks applied to the data. If not available, posi-
tional ranks are applied.

m_rank The scope of the ranking methods which is between 2 and 15.

Value

A list with the following components:

Data mean table Table of data ranked using simple average.
Garrett ranked data

Table of data ranked using Garrett mean score.

Garrett value Table of ranking Garrett values
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Examples

garrett_data <- data.frame(garrett_data)
ranking <- c("Serious constraint", "Constraint",
"Not certain it is a constraint", "Not a constraint",
"Not a serious constraint")

## ranking is supplied
garrett_ranking(garrett_data, 5, ranking)

# ranking not supplied
garrett_ranking(garrett_data, 5)

# you can rank subset of the data
garrett_ranking(garrett_data, 8)

garrett_ranking(garrett_data, 4)

invscaledlogit Exponential Values after One-Sided Response Integer Variable Fore-
casting

Description

This function is used to estimate exponential lower (80% and 95%) and upper (80% and 95%) values
from the outcome of the scaledlogit function. The exponentiation ensures that the forecast does
not go beyond the upper and lower limits of the base data.

Usage

invscaledlogit(x, lower, upper)

Arguments

x The forecast values from constrained forecast package. Please specify the ap-
propriate column containing the forecast values.

lower Lower limits of the forecast values

upper Upper limits of the forecast values

Examples

x <- 1:35
lower <- 1
upper <- 35
invscaledlogit(x = x, lower = lower, upper = upper)
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MallowsCp Computation of MallowsCp

Description

Mallow’s Cp is one of the very useful metrics and selection criteria for machine learning algorithms
(models). It is used to estimate the closest number to the number of predictors and the intercept
(approximate number of explanatory variables) of linear and non-linear based models. The function
inherits residuals from the estimated model. The uniqueness of this function compared to other
procedures for computing Mallow’s Cp is that it does not require nested models for computation
and it is not limited to lm based models only.

Usage

MallowsCp(Model, y, x, type, Nlevels = 0)

Arguments

Model The estimated model from which the Mallows Cp would be computed

y The vector of the LHS variable of the estimated model

x The matrix of the RHS variable of the estimated model. Note that if the model
adds additional factor variables into the output, then the number of additional
factors Nlevels is required otherwise the computed Cp would be biased.

type The type of model (LM, ALM, GLM,N-LM, nls, ARDL, SMOOTH, SPLINE, ARIMA, plm)
for which Cp would be computed broadly divided in to linear (LM, ALM, GLM,
ARDL, SMOOTH, SPLINE, ARIMA, plm) and non-linear (GLM,N-LM, nls). The type
of model must be specified as indicated. Supported models are LM, ALM, GLM
(for binary based models), N-LM (not linear for models not clearly defined as
linear or non-linear especially some of the essemble models that are merely
computed not estimated) or nls for other non linear models, ARDL, SMOOTH for
smooth.spline, SPLINE for bs spline models, ARIMA and plm.

Nlevels Optional number of additional variables created if the model has categorical
variables that generates additional dummy variables during estimation or the
number of additional variables created if the model involves interaction terms.

Value

A list with the following components

MallowsCp of the Model.

Examples

library(Dyn4cast)
ctl <- c(4.17,5.58,5.18,6.11,4.50,4.61,5.17,4.53,5.33,5.14)
trt <- c(4.81,4.17,4.41,3.59,5.87,3.83,6.03,4.89,4.32,4.69)
x <- gl(2, 10, 20, labels = c("Ctl","Trt"))
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y <- c(ctl, trt)
Model <- lm(y ~ x)
Type <- "LM"
MallowsCp(Model = Model, y = y, x = x, type = Type, Nlevels = 0)

MLMetrics Collection of Machine Learning Model Metrics for Easy Reference

Description

This function estimates over 40 Metrics for assessing the quality of Machine Learning Models. The
purpose is to provide a wrapper which brings all the metrics on the table and makes it easier to use
them to select a model.

Usage

MLMetrics(Observed, yvalue, Model, K, Name, Form, kutuf, TTy)

Arguments

Observed The Observed data in a data frame format

yvalue The Response variable of the estimated Model

Model The Estimated Model (Model = a + bx)

K The number of variables in the estimated Model to consider

Name The Name of the Models that need to be specified. They are ARIMA, Val-
ues if the model computes the fitted value without estimation like Essembles,
SMOOTH (smooth.spline), Logit, Ensembles based on weight - EssemWet,
QUADRATIC polynomial, SPLINE polynomial.

Form Form of the Model Estimated (LM, ALM, GLM, N-LM, ARDL)

kutuf Cutoff for the Estimated values (defaults to 0.5 if not specified)

TTy Type of response variable (Numeric or Response - like binary)

Value

A list with the following components:

Absolute Error of the Model.
Absolute Percent Error

of the Model.

Accuracy of the Model.
Adjusted R Square

of the Model.
‘Akaike’s‘ Information Criterion AIC

of the Model.
Area under the ROC curve (AUC)

of the Model.
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Average Precision at k

of the Model.

Bias of the Model.

Brier score of the Model.
Classification Error

of the Model.

F1 Score of the Model.

fScore of the Model.
GINI Coefficient

of the Model.
kappa statistic

of the Model.

Log Loss of the Model.

‘Mallow’s‘ cp of the Model.
Matthews Correlation Coefficient

of the Model.

Mean Log Loss of the Model.
Mean Absolute Error

of the Model.
Mean Absolute Percent Error

of the Model.
Mean Average Precision at k

of the Model.
Mean Absolute Scaled Error

of the Model.
Median Absolute Error

of the Model.
Mean Squared Error

of the Model.
Mean Squared Log Error

of the Model.
Model turning point error

of the Model.
Negative Predictive Value

of the Model.

Percent Bias of the Model.
Positive Predictive Value

of the Model.

Precision of the Model.

R Square of the Model.
Relative Absolute Error

of the Model.

Recall of the Model.
Root Mean Squared Error

of the Model.
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Root Mean Squared Log Error

of the Model.
Root Relative Squared Error

of the Model.
Relative Squared Error

of the Model.
‘Schwarz’s‘ Bayesian criterion BIC

of the Model.

Sensitivity of the Model.

specificity of the Model.

Squared Error of the Model.

Squared Log Error

of the Model.
Symmetric Mean Absolute Percentage Error

of the Model.
Sum of Squared Errors

of the Model.
True negative rate

of the Model.
True positive rate

of the Model.

Examples

library(splines)
Model <- lm(states ~ bs(sequence, knots = c(30, 115)), data = Data)
MLMetrics(Observed = Data, yvalue = Data$states, Model = Model, K = 2,
Name = "Linear", Form = "LM", kutuf = 0, TTy = "Number")

Percent Attach Per Cent Sign to Data

Description

This function is a wrapper for easy affixing of the per cent sign (%) to a value or a vector or a data
frame of values.

Usage

Percent(Data, Type, format = "f", ...)
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Arguments

Data The Data which the percent sign is to be affixed. The data must be in the raw
form because for frame argument, the per cent value of each cell is calculated
before the sign is affixed.

Type The type of data. The default arguments are Value for single numeric data of
Frame for a numeric vector or data frame data. In the case of vector or data
frame, the per cent value of each cell is calculated before the per cent sign is
affixed.

format The format of the output which is internal and the default is a character factor

... Additional arguments that may be passed to the function

Value

This function returns the result as

percent values with the percentage sign (%) affixed.

Examples

Data <- c(1.2, 0.5, 0.103, 7, 0.1501)
Percent(Data = Data, Type = "Frame") # Value, Frame
Data <- 1.2
Percent(Data = Data, Type = "Value") # Value, Frame
Percent(Data = sample, Type = "Frame") # Value, Frame

quicksummary Quick Formatted Summary of Machine Learning Data

Description

There is increasing need to make user-friendly and production ready Tables for machine learning
data. This function is a simplified quick summary and the output is a formatted table. This is very
handy for those who do not have the time to write codes for user-friendly summaries.

Usage

quicksummary(x, Type, Cut, Up, Down, ci = 0.95)

Arguments

x The data to be summarised. Only numeric data is allowed.

Type The type of data to be summarised. There are two options here 1 or 2, 1 =
Continuous and 2 = Likert-type

Cut The cut-off point for Likert-type data

Up The top Likert-type scale, for example, Agree, Constraints etc which would
appear in the remark column.
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Down The lower Likert-type scale, for example, Disagree, Not a Constraint etc
which would appear in the remark column.

ci Confidence interval which is defaults to 0.95.

Value

The function returns a formatted Table of the Quick summary

ANS The formatted Table of the summary

Examples

# Likert-type data
Up <- "Constraint"
Down <- "Not a constraint"
quicksummary(x = Quicksummary, Type = 2, Cut = 2.60, Up = Up, Down = Down)

# Continuous data
x <- select(linearsystems, 1:6)
quicksummary(x = x, Type = 1)

scaledlogit Scale Parameter for Integer Modeling and Forecast

Description

This function is a wrapper for scaling the fitted (predicted) values of a one-sided (positive or negative
only) integer response variable of supported models. The scaling involves some log transformation
of the fitted (predicted) values.

Usage

scaledlogit(x, lower, upper)

Arguments

x The parameter to be scaled, which is the fitted values from supported models.
The scaled parameter is used mainly for constrained forecasting of a response
variable positive (0 - inf) or negative (-inf - 0). The scaling involves log trans-
formation of the parameter

lower Integer or variable representing the lower limit for the scaling (-inf or 0)

upper Integer or variable representing the upper limit for the scaling (0 or inf)
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Examples

library(Dyn4cast)
library(splines)
lower <- 1
upper <- 37
Model <- lm(states ~ bs(sequence, knots = c(30, 115)), data = Data)
scaledlogit(x = fitted.values(Model), lower = lower,
upper = upper)

treatment_model Enhanced Estimation of Treatment Effects of Binary Data from Ran-
domized Experiments

Description

Observational study involves the evaluation of outcomes of participants not randomly assigned
treatments or exposures. To be able to assess the effects of the outcome, the participants are matched
using propensity scores (PSM). This then enables the determination of the effects of the treatments
on those treated against those who were not treated. Most of the earlier functions available for this
analysis only enables the determination of the average treatments effects on the treated (ATT) while
the other treatment effects are optional. This is where this functions is unique because five different
average treatment effects are estimated simultaneously, in spite of the one line code arguments.
The five treatment effects are:

1. Average treatment effect for the entire (ATE) population

2. Average treatment effect for the treated (ATT) population

3. Average treatment effect for the controlled (ATC) population

4. Average treatment effect for the evenly matched (ATM) population

5. Average treatment effect for the overlap (ATO) population.

There excellent materials dealing with each of the treatment effects, please see

Usage

treatment_model(Treatment, x_data)

Arguments

Treatment Vector of binary data (0, 1) LHS for the treatment effects estimation

x_data Data frame of explanatory variables for the RHS of the estimation

https://livefreeordichotomize.com/posts/2019-01-17-understanding-propensity-score-weighting/
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Value

A list with the following components:

Model Estimated treatment effects model.

Effect Data frame of the estimated various treatment effects.

P_score Vector of estimated propensity scores from the model
Fitted_estimate

Vector of fitted values from the model

Residuals Residuals of the estimated model
‘Experiment plot‘

Plot of the propensity scores from the model faceted into Treated and control
populations

‘ATE plot‘ Plot of the average treatment effect for the entire population

‘ATT plot‘ Plot of the average treatment effect for the treated population

‘ATC plot‘ Plot of the average treatment effect for the controlled population

‘ATM plot‘ Plot of the average Treatment effect for the evenly population

‘ATO plot‘ Plot of the average Treatment effect for the overlap population

weights Estimated weights for each of the treatment effects

Examples

Treatment = treatments$treatment
data = treatments[, c(2:3)]
treatment_model(Treatment, data)
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